• 文献标题:   TeV/m catapult acceleration of electrons in graphene layers
  • 文献类型:   Article
  • 作  者:   BONTOIU C, APSIMON O, KUKSTAS E, RODIN V, YADAV M, WELSCH C, RESTALOPEZ J, BONATTO A, XIA GX
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1038/s41598-023-28617-w
  • 出版年:   2023

▎ 摘  要

Recent nanotechnology advances enable fabrication of layered structures with controllable inter-layer gap, giving the ultra-violet (UV) lasers access to solid-state plasmas which can be used as medium for electron acceleration. By using a linearly polarized 3 fs-long laser pulse of 100 nm wavelength and 1021 W/cm2 peak intensity, we show numerically that electron bunches can be accelerated along a stack of ionized graphene layers. Particle-In-Cell (PIC) simulations reveal a new self-injection mechanism based on edge plasma oscillations, whose amplitude depends on the distance between the graphene layers. Nanometre-size electron ribbons are electrostatically catapulted into buckets of longitudinal electric fields in less than 1 fs, as opposed to the slow electrostatic pull, common to laser wakefield acceleration (LWFA) schemes in gas-plasma. Acceleration then proceeds in the blowout regime at a gradient of 4.79 TeV/m yielding a 0.4 fs-long bunch with a total charge in excess of 2.5 pC and an average energy of 6.94 MeV, after travelling through a graphene target as short as 1.5 mu m. These parameters are unprecedented within the LWFA research area and, if confirmed experimentally, may have an impact on fundamental femtosecond research.