▎ 摘 要
We study, with the help of exact-diagonalization calculations, a four-component trial wave function that may be relevant for the recently observed graphene fractional quantum Hall state at a filling factor nu(G) = 1/3. Although it is adiabatically connected to a 1/3 Laughlin state in the upper spin branch, with SU(2) valley-isospin ferromagnetic ordering and a completely filled lower spin branch, it reveals physical properties beyond such a state that is the natural ground state for a large Zeeman effect. Most saliently, it possesses at experimentally relevant values of the Zeeman gap low-energy spin-flip excitations that may be unveiled in inelastic light-scattering experiments.