▎ 摘 要
A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.