• 文献标题:   Extra-Low Dosage Graphene Oxide Cementitious Nanocomposites: A Nano- to Macroscale Approach
  • 文献类型:   Article
  • 作  者:   CHOUGAN M, LAMASTRA FR, BOLLI E, CASCHERA D, KACIULIS S, MAZZUCA C, MONTESPERELLI G, GHAFFAR SH, ALKHEETAN MJ, BIANCO A
  • 作者关键词:   graphene oxide, cementitious nanocomposite, rheology, workability, mechanical propertie, permeability
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   6
  • DOI:   10.3390/nano11123278
  • 出版年:   2021

▎ 摘  要

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm x 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.