• 文献标题:   High performance, self- powered photodetectors based on a graphene/silicon Schottky junction diode
  • 文献类型:   Article
  • 作  者:   PERIYANAGOUNDER D, GNANASEKAR P, VARADHAN P, HE JH, KULANDAIVEL J
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY C
  • ISSN:   2050-7526 EI 2050-7534
  • 通讯作者地址:   Bharathidasan Univ
  • 被引频次:   11
  • DOI:   10.1039/c8tc02786b
  • 出版年:   2018

▎ 摘  要

Electron-hole pair separation and photocurrent conversion at two-dimensional (2D) and three-dimensional (3D) hybrid interfaces are important for achieving high performance, self-powered optoelectronic devices such as photodetectors. In this regard, herein, we designed and demonstrated a graphene/silicon (Gr/Si) (2D/3D) van der Waals (vdW) heterostructure for high-performance photodetectors, where graphene acts as an efficient carrier collector and Si as a photon absorption layer. The Gr/Si heterojunction exhibits superior Schottky diode characteristics with a barrier height of 0.76 eV and shows good performance as a self-powered detector, responding to 532 nm at zero bias. The self-powered photodetector functions under the mechanism of photovoltaic effect and exhibits responsivity as high as 510 mA W-1 with a photo switching ratio of 10(5) and a response time of 130 s. The high-performance vdW heterostructure photodetector demonstrated herein is attributed to the Schottky barrier that effectively prolongs the lifetime of photo-excited carriers, resulting in fast separation and transport of photoexcited carriers. The self-powered photodetector with superior light harvesting and carrier transport behaviour is expected to open a window for the technological implementation of Si-based monolithic optoelectronic devices.