▎ 摘 要
Pillared Graphene Frameworks are a novel class of microporous materials made by graphene sheets separated by organic spacers. One of their main features is that the pillar type and density can be chosen to tune the material properties. In this work, we present a computer simulation study of adsorption and dynamics of H-2, CH4, CO2, N-2 and O-2 and binary mixtures thereof, in Pillared Graphene Frameworks with nitrogen-containing organic spacers. In general, we find that pillar density plays the most important role in determining gas adsorption. In the low-pressure regime (