• 文献标题:   Progress study on nickel ferrite alloy-graphene nanosheets nanocomposites as supercapacitor electrodes
  • 文献类型:   Article
  • 作  者:   DEYAB MA, AWADALLAH AE, AHMED HA, MOHSEN Q
  • 作者关键词:   supercapacitor, nife2o4, graphene, nanocomposite, power density, energy density
  • 出版物名称:   JOURNAL OF ENERGY STORAGE
  • ISSN:   2352-152X EI 2352-1538
  • 通讯作者地址:  
  • 被引频次:   12
  • DOI:   10.1016/j.est.2021.103926 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

Nickel ferrite (NiFe2O4) is a promising material for electrochemical supercapacitors among many metal ferrites. However, the low specific capacitance of NiFe2O4 limits its application. We present a new high-performance supercapacitor based on a nanocomposite material of NiFe alloy-graphene nanosheets (NiFe-A@GNS). We prepared NiFe2O4 nanoparticles using a simple liquid fusion method and used as a catalyst substrate for the chemical vapor deposition (CVD) synthesis of NiFe-A@GNS nanocomposite material. According to the XRD, TEM, SEM and Raman results, high-quality, crystalline, and graphitized GNS was successively composited with NiFe-A nanoparticles. Therefore, both pristine NiFe2O4 and the new composite material were evaluated as electrodes for supercapcitors. In the case of NiFe-A@GNS nanocomposite, we report a 3.2-fold increase in specific capacitance (845 F g 1) when compared to the pristine NiFe2O4 (264 F g (1)). Furthermore, after 5000 cycles, the NiFe-A@GNS electrode retains 94.3% of its capacity, making it more stable than the NiFe2O4 electrode (62% after 2000 cycles). At 1.0 A g(-1) current density, the NiFe-A@GNS device has a high energy density (30.8 Wh kg(-1)) and a high power density (620 W kg(-1)). The synergistic effects of NiFe-A and graphene nanosheets, as well as the excellent surface characteristics, are the keys to the high performance of NiFe-A@GNS electrodes. Our design offers a promising method for developing high-performance supercapacitor devices.