• 文献标题:   Spin Transport in Be Edge-Doped Graphene Nanoribbon
  • 文献类型:   Article
  • 作  者:   WU TT, WANG XF, JIANG YJ, ZHOU LP
  • 作者关键词:   spin transport, graphene nanoribbon, negative differential resistance
  • 出版物名称:   JOURNAL OF NANOSCIENCE NANOTECHNOLOGY
  • ISSN:   1533-4880
  • 通讯作者地址:   Soochow Univ
  • 被引频次:   4
  • DOI:   10.1166/jnn.2012.5440
  • 出版年:   2012

▎ 摘  要

We report an atomistic simulation of spin dependent charge transport in zigzag graphene nanoribbons with 4 zigzag chains doped by a Beryllium atom on one edge. The spin dependent density functional theory with norm-conserving atomic basis set is employed to describe the system and the current versus voltage behavior is calculated by the nonequilibrium Green's function method for quantum transport. The Be impurity atom suppresses the local magnetization near the edge and the transmitted charge current becomes spin polarized accordingly. Both spin-up and spin-down transmission spectra are modified significantly but in different ways. Distinguished from the previous doping results of other impurity elements, here we observe negative differential resistance for only one of the spins in the nonlinear transport regime below bias 1.5 V. Molecular projected Hamiltonian energy spectrum near the impurity shows that the impurity removes the energy degeneracy of spin in perfect ribbon. The current versus voltage shows semiconductor behavior with fluctuating spin polarization of amplitude up to 37%.