• 文献标题:   Controlling enzymatic activity by immobilization on graphene oxide
  • 文献类型:   Article
  • 作  者:   BOLIBOK P, WISNIEWSKI M, ROSZEK K, TERZYK AP
  • 作者关键词:   graphene oxide, immobilization, catalase, kinetic parameter, secondary structure alteration
  • 出版物名称:   SCIENCE OF NATURE
  • ISSN:   0028-1042 EI 1432-1904
  • 通讯作者地址:   Nicolaus Copernicus Univ Torun
  • 被引频次:   12
  • DOI:   10.1007/s00114-017-1459-3
  • 出版年:   2017

▎ 摘  要

In this study, graphene oxide ( GO) has been applied as a matrix for enzyme immobilization. The protein adsorption capacity of GO is much higher than of other large surface area carbonaceous materials. Its structure and physicochemical properties are reported beneficial also for enzymatic activity modifications. The experimental proof was done here that GO-based biocatalytic systems with immobilized catalase are modifiable in terms of catalyzed reaction kinetic constants. It was found that activity and stability of catalase, considered here as model enzyme, closely depend on enzyme/GO ratio. The changes in kinetic parameters can be related to secondary structure alterations. The correlation between enzyme/GO ratio and kinetic and structure parameters is reported for the first time and enables the conscious control of biocatalytic processes and their extended applications. The biological activity of obtained biocatalytic systems was confirmed in vitro by the use of functional test. The addition of immobilized catalase improved the cells' viability after they were exposed to hydrogen peroxide and tert-butyl-hydroperoxide used as source of reactive oxygen species.