▎ 摘 要
We investigate the infrared response of graphene dimers with various doping and polarization configurations. The interaction between the plasmonic resonances of graphene nanodisks leads to a rich, tunable behavior. The hybridization of the nanodisk modes enables the excitation of resonances that would be invisible or dark in a single disk. The simulation results show various anticrossings that depend on dark-bright or bright-bright mode coupling, which we can describe via a simple Hamiltonian model. In addition, we determine the response of a dimer bridged by a tunable graphene junction. This structure leads to charge transfer plasmons, with an even higher absorption efficiency and tunability than nonbridged dimers.