▎ 摘 要
We present a theory of quantum-coherent transport through a lateral p-n-p structure in graphene, which fully accounts for the interference of forward and backward scattering on the p-n interfaces. The backreflection amplitude changes sign at zero incidence angle because of the Klein phenomenon, adding a phase pi to the interference fringes. The contributions of the two p-n interfaces to the phase of the interference cancel with each other at zero magnetic field, but become imbalanced at a finite field. The resulting half-period shift in the Fabry-Perot fringe pattern, induced by a relatively weak magnetic field, can provide a clear signature of Klein scattering in graphene. This effect is shown to be robust in the presence of spatially inhomogeneous potential of moderate strength.