• 文献标题:   In Situ Growth Enabling Ideal Graphene Encapsulation upon Mesocrystalline MTiO3 (M = Ni, Co, Fe) Nanorods for Stable Lithium Storage
  • 文献类型:   Article
  • 作  者:   XU JJ, DING W, ZHAO WL, ZHAO W, HONG ZL, HUANG FQ
  • 作者关键词:  
  • 出版物名称:   ACS ENERGY LETTERS
  • ISSN:   2380-8195
  • 通讯作者地址:   Zhejiang Univ
  • 被引频次:   15
  • DOI:   10.1021/acsenergylett.7b00018
  • 出版年:   2017

▎ 摘  要

Ilmenite-type MTiO3 (M = Ni, Co, Fe) with high theoretical specific capacity, wide availability, and low cost is a potential anode material for lithium storage, but its poor cycling stability is fatal. Here, we propose a general material design strategy to encapsulate MTiO3 nanorods with in situ grown few-layer graphene through a facile plasma-enhanced CVD route for stable lithium storage. Under the reductive plasma-enhanced CVD atmosphere, partially reduced Ni served as a self-catalysis substrate for in situ graphene growth, resulting in the perfect encapsulation of NiTiO3 nanorods with few-layer graphene. The graphene coating helps to retain the electrical connectivity during cycling, which is beneficial for better cycling performance and rate capability. Stable cycling (500 cycles at 0.2 A g(-1); 83% capacity retention) is achieved with the NiTiO3@graphene nanorods.