• 文献标题:   Depression of the normal-superfluid transition temperature in gated bilayer graphene
  • 文献类型:   Article
  • 作  者:   FISCHETTI MV
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF APPLIED PHYSICS
  • ISSN:   0021-8979 EI 1089-7550
  • 通讯作者地址:   Univ Texas Dallas
  • 被引频次:   8
  • DOI:   10.1063/1.4873637
  • 出版年:   2014

▎ 摘  要

It is shown that the normal-superfluid transition in bilayer graphene predicted to occur at a high temperature is strongly affected not only by the dielectric constants of the substrate, interlayer, and gate insulators but also by the proximity of ideal metal gates. Even assuming optimistically a completely unscreened interlayer Coulomb interaction-thus bypassing the controversial problems regarding the proper way to screen the interlayer Coulomb interactions-it is shown that employing a gate-insulator thickness smaller than about 2-to-5 nm of equivalent SiO2-thickness pushes the transition temperature significantly below 300K to the 1 K-1mK range, depending on the dielectric constant of the gate insulator and on the dielectric mismatch of the insulators employed. These results imply that thicker and low-dielectric-constant gate insulators should be employed to observe the phase transition, but exploiting the superfluid state of gated graphene-bilayers in room-temperature device applications may be challenging. (C) 2014 AIP Publishing LLC.