▎ 摘 要
We fabricate a nanolaminate by repeated co-sputter deposition of a 60 nm-thick Cu50Zr50 metallic glass layer alternating with transfer of graphene. In situ micro-tensile tests reveal that the addition of a very small fraction (0.46 vol%) of graphene in the nanolaminate improve the elastic modulus and yield strength of the nanolaminate by 9.6% and 14%, respectively, comparing with those of the 360 nm-thick monolithic Cu50Zr50 metallic glass. The nanolaminate also show enhanced tensile ductility: an ultimate tensile strength of 2.23 GPa and fracture strain of 539% were attained by strain-hardening after yielding at 1.98 GPa stress and 3.69% strain. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.