▎ 摘 要
In this work, vanadium complex anchored reduced graphene oxide (rGO-VO) was successfully synthesized by coordination interaction with phenyl azo salicylaldehyde (PAS) coupled trimethoxy silyl propanamine (TMSPA). The physicochemical and microscopic properties of rGO-VO were studied with different analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) which confirmed the synthesis of rGO-VO. The electrochemical studies of rGO-VO in glassy carbon electrode demonstrated high current density because of the amazing electrochemical properties of rGO. The photocatalytic studies of anchored rGO-VO and VO(acac)(2) toward MB dye indicated that anchored rGO-VO with visible light irradiated MB was degraded fast as compared to VO(acac)(2).