▎ 摘 要
Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted extensive research interest due to their simple structure and potential low-cost. Surface texturing is an important part of high-efficiency solar cells. In this paper, the effects of TMAH concentration, IPA concentration and etching time on the structure and anti-reflection ability of silicon pyramid array (SiPa) were systematically studied to obtain uniform and reliable pyramid array. Under the optimized conditions, a large scale SiPa with uniform size distribution was obtained and applied to Gr/Si solar cells. The results show that the TMAH etched SiPa has a better Schottky junction contact between graphene and the SiPa surface, and the SiPa can further improves the ability of collecting photogenerated carriers. Compared with Gr/Si solar cells, the power conversion efficiency (PCE) of Gr/SiPa device is 1.66 times higher than that of Gr/Si solar cells. Finally, Gr/SiPa devices with PCE of 5.67% is successfully obtained by HNO3 doping. This work proposes a new strategy for TMAH etching SiPa to improve the performance of Gr/Si solar cells.