• 文献标题:   Interlayer Potential for Graphene/h-BN Heterostructures
  • 文献类型:   Article
  • 作  者:   LEVEN I, MAARAVI T, AZURI I, KRONIK L, HOD O
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF CHEMICAL THEORY COMPUTATION
  • ISSN:   1549-9618 EI 1549-9626
  • 通讯作者地址:   Tel Aviv Univ
  • 被引频次:   31
  • DOI:   10.1021/acs.jctc.6b00147
  • 出版年:   2016

▎ 摘  要

We present a new force-field potential that describes the interlayer interactions in heterojunctions based on graphene and hexagonal boron nitride (h-BN). The potential consists of a long-range attractive term and a short-range anisotropic repulsive term. Its parameters are calibrated against reference binding and sliding energy profiles for a set of finite dimer systems and the periodic graphene/h-BN bilayer, obtained from density functional theory using a screened exchange hybrid functional augmented by a many-body dispersion treatment of long-range correlation. Transferability of the parametrization is demonstrated by considering the binding energy of bulk graphene/h-BN alternating stacks. Benchmark calculations for the superlattice formed when relaxing the supported periodic heterogeneous bilayer provide good agreement with both experimental results and previous computational studies. For a free-standing bilayer we predict a highly corrugated relaxed structure. This, in turn, is expected to strongly alter the physical properties of the underlying monolayers. Our results demonstrate the potential of the developed force-field to model the structural, mechanical, tribological, and dynamic properties of layered heterostructures based on graphene and h-BN.