▎ 摘 要
Using first-principles calculations, we study on the energetics, kinetics, and electronic properties of transition metal atoms Ti, Mn, and Au on zigzag graphene nanoribbons (ZGNRs) with one edge saturated by two H atoms C(2H), while the other one by one H atom C(H). Because of the larger magnetic bearded edge states on the C(2H) edge, all these three adatoms prefer adsorbing on the C(2H) edge, but Ti binds stronger to ZGNRs on the C(2H) edge than both Mn and Au atoms. The saturated C(2H) edge not only dramatically enhances the Ti mobility from the center to C(2H) edge but also weakens the diffusion isotropy; thus, Ti quantum wire is formed readily along the C(2H) edge. Along Ti atomic wire there is a spin up conducting channel contributed by pure Ti 3d state, indicating spin dependent charge transport properties. This may open new avenues in fabricating metal quantum wires.