▎ 摘 要
The current work seeks to discover and choose the proper friction stir processing (FSP) settings for aluminum alloy 7075 surface composites enhanced by adding three unique nanoparticles of titanium dioxide (TiO2), B4C, and graphene for superior performance. FSP is the only method that produces higher amounts of particle distribution and nanoscale reinforcing. For the sample fabrication, a special relatively high rotational speed of 2000 rpm and feed rate of 45 mm/min were tested with a suitable range of processing parameters (800-2000 rpm, 25-45 mm/min). To measure the micro-hardness and surface roughness of three different surface nano composites, they were studied under various FSP conditions. The findings showed that surface composites produced at high rotational speeds of 1400 rpm and 45 mm/min decreased surface roughness and granule distributions by 39% and 73%, respectively, and increased surface micro-hardness by 54%. According to the microstructure investigations, good bonding was produced between the AA7075 substrate generated at 1200 rpm and the base metal and friction stir processed specimens at 800 and 2000 rpm. The AA7075/B4C surface composite produced at 1200 rpm rotating speed had a higher micro-hardness than the other two surface composites.