• 文献标题:   Zero power infrared sensing in 2D/3D-assembled heterogeneous graphene/In/InSe/Au
  • 文献类型:   Article
  • 作  者:   JANG H, SONG YM, SEOK Y, IM H, KIM TH, LEE JH, KIM YH, LEE K
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d1nr07884d EA FEB 2022
  • 出版年:   2022

▎ 摘  要

Low- or self-powered infrared sensors can be used in a broad range of applications, including networking mobile edge devices and image recognition for autonomous driving technology. Here, we show state-of-the-art self-powered near-infrared (NIR) sensors using graphene/In/InSe/Au as a photoactive region. The self-powered NIR sensors show outstanding performance, achieving a photoresponsivity of similar to 8.5 A W-1 and a detectivity of similar to 10(12) Jones at 850 nm light. Multiple self-powered InSe photodetectors with different device structures and contacts were systematically investigated. In particular, the asymmetrically assembled graphene/In/InSe/Au vertical heterostructure offers a high built-in field, which gives rise to efficient electron-hole pair separation and transit time that is shorter than the photocarrier lifetime. The built-in potential across the InSe was estimated using the Schottky barrier height at each metal contact with InSe, obtained using density functional theory calculations. We also demonstrate InSe vertical field-effect transistors and provide an out-of-plane carrier mobility of InSe. Using the out-of-plane mobility and structural parameters of each device, the built-in field, drift velocity, and corresponding transit time are estimated.