▎ 摘 要
The interest in bioinspired graphene-based nanocomposites (BGBNs) is rising recently due to their exceptional mechanical properties as well as high electrical conductivities. Numerous works have suggested that the synergistic interfacial design of ionic bonding (IB) co-working with other interfacial interactions effectively improves the mechanical properties of BGBNs. However, as the ions are conventionally chelated with graphene oxide (GO) nanosheets, the relatively weak and short interlayered IB may hinder the load transfer between GO nanosheets leading to poor synergistic effects. Herein, inspired by the jaw of Glycera, the synergistic effect is further amplified via special IB, which stiffens the organic component. Compared with the traditional IB, the metal-ligand coordinate bonding by copper ions that is used in this work and originates from Glycera, selectively cross-links the chitosan chains. This Glycera-inspired synergistic effect strategy boosts record tensile strength to an extraordinary value of 868.6 MPa, five times higher than that of the pure reduced graphene oxide film. The additional high electrical conductivity enables applications in many fields such as flexible energy devices, supercapacitors, and other electronic devices.