• 文献标题:   Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties
  • 文献类型:   Article
  • 作  者:   ZHANG QQ, ZHANG F, XU X, ZHOU C, LIN D
  • 作者关键词:   3d graphene lattice, stereolithography, 3d printing hollow polymer, tailorable manipulation, selforganization design
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Lanzhou Univ
  • 被引频次:   8
  • DOI:   10.1021/acsnano.7b06095
  • 出版年:   2018

▎ 摘  要

It is a significant challenge to concurrently achieve scalable fabrication of graphene aerogels with three-dimensional (3D) tailorable architectures (e.g., lattice structure) and controllable manipulation of microstructures on the multiscale. Herein, we highlight 3D graphene lattices (GLs) with complex engineering architectures that were delicately designed and manufactured via 3D stereolithography printed hollow polymer template-mediated hydrothermal process coupled with freeze-drying strategies. The resulting GLs with overhang beams and columns show a 3D geometric configuration with hollow carved features at the macroscale, while the construction elements of graphene cellular on the microscale exhibit a well ordered and honeycomb-like microstructure with high porosity. These GLs demonstrate multifunctional properties with robust structure, high electrical conductivity, low thermal conductivity, and superior absorption capacitance of organic solvents. Moreover, the GLs were utilized as a subtle sensor for the fast detection of chemical agents. Aforementioned superior properties of GLs confirm that the combination of 3D tailorable manipulation and self-organization design of structures on the multiscale is an effective strategy for the scalable fabrication of advanced multifunctional graphene monoliths, suggesting their promising applications as chemical detection sensors, environmental remediation absorbers, conductive electrodes, and engineering metamaterials.