▎ 摘 要
Multilayer graphene is considered a promising material for various optoelectronic devices. To exploit its intriguing electronic properties, an electric field must be achieved inside this material. However, creation of a desired electric field in multilayer graphene is difficult because any external electric field is mostly screened by its outermost surface. Here, we report a one-step chemical vapor deposition method for the synthesis of Bernal-like stacked graphene with a built-in vertical electric field that can be tuned over a wide range. This method can be used to control the optoelectronic properties of graphene in the synthesis stage. Owing to this built-in vertical electric field and Bernal-like stacking, the synthesized graphene exhibits vertical photovoltaic effects, which is very promising for various optoelectronic applications.