• 文献标题:   Nanocarved vanadium nitride nanowires encapsulated in lamellar graphene layers as supercapacitor electrodes
  • 文献类型:   Article
  • 作  者:   ZHAO D, YUAN XY, WANG RQ, ZHAO Q, GUO SW
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCEMATERIALS IN ELECTRONICS
  • ISSN:   0957-4522 EI 1573-482X
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1007/s10854-021-06619-6 EA JUL 2021
  • 出版年:   2021

▎ 摘  要

Supercapacitors have the characteristics of high specific capacitance, long cycle life and fast charging ability, which have shown extremely valuable applications in energy storage fields. Improving the electrode materials is a crucial approach to achieve high capacity. Vanadium nitride (VN) has higher theoretical capacitance than noble metal oxides, as well as better chemical stability and good electrical conductivity. Herein, a composite of VN nanowires with multiple cavities encapsulated in N-doped reduced graphene oxide lamellar layers (VNNWs@rGO) has been synthesized by facile freeze-casting and subsequent nitridation technique. The hierarchical VNNWs@rGO composite exhibited excellent supercapacitor performance: high capacitances of 222 and 65 F g(-1) were achieved at current densities of 0.5 and 10 A g(-1), respectively. The improved electrochemical performance is associated with the unique structural design: the N-doped rGO sheets endowed enhanced electric conductivity and chemical stability for VN, the interconnected laminar network of VNNWs@rGO are crucial for electrolyte penetration and charge transfer, and the cavities and nanoparticles inside the VN nanowires can provide abundant active sites for electric double-layer capacitor and pseudocapacitance.