• 文献标题:   Development of conductive paraffin/graphene films laminated on fluoroelastomers with high strain recovery and anti-corrosive properties
  • 文献类型:   Article
  • 作  者:   VALENTINI L, BON SB, LOPEZMANCHADO MA, MUSSOLIN L, PUGNO N
  • 作者关键词:   graphene, fluoroelastomer, lamination, mechanical propertie, stretchable conductor
  • 出版物名称:   COMPOSITES SCIENCE TECHNOLOGY
  • ISSN:   0266-3538 EI 1879-1050
  • 通讯作者地址:   Univ Perugia
  • 被引频次:   3
  • DOI:   10.1016/j.compscitech.2017.06.023
  • 出版年:   2017

▎ 摘  要

Parafilm is a soft, solvent-proof and self -sealant thermoplastic material obtained by blending paraffin wax and polyolefin and that displays irreversible elongational thinning as the material is stretched. In this paper a lamination process was used to transfer graphene nanoplatelets (GNPs) on self-adherent Parafilm substrate and we show that a high-strain state of such conductive Parafilm/GNPs film is reversible when the film is transferred by lamination to a fluoroelastomer (FKM) substrate. The stretching of GNP network stuck on viscoelastic Parafilm gave rise to regions of high and low GNP concentrations with increasing the electrical resistance upon stretching. Upon relaxation from a high strain state, the composite film on FKM substrate maintain the initial electrical conductive state. Finally it was shown the reduction of the ethanol corrosion action in terms of swelling and mechanical performance of the neat FKM when the Parafilm/GNPs film is used for its packaging. In view of the low cost thermoplastic polymer used for the transferring and the lamination method proposed, these findings represent a facile and an industrial scalable approach to realize novel multifunctional elastomer composites.(C) 2017 Elsevier Ltd. All rights reserved.