▎ 摘 要
The strength-ductility trade-off has been a long-standing challenge when designing and fabricating a novel metal matrix composite. In this study, graphene-nanosheets (GNSs)-reinforced copper (Cu)-matrix-laminated composites were fabricated through two methods, i.e., the alternating electrodeposition technique followed by spark plasma sintering (SPS) and direct electrodeposition followed by hot-press sintering. As a result, a Cu-GNS-Cu layered structure formed in the composites with various Cu layer thicknesses. Compared with the pure Cu, the yield strength of the GNS/Cu composites increased. However, the mechanical performance of the GNS/Cu composites was strongly Cu-layer-thickness-dependent, and the GNS/Cu composite possessed a brittle fracture mode when the Cu layer was thin (