▎ 摘 要
Interface strain can significantly influence the mechanical, electronic and magnetic properties of lowdimensional materials. Here we investigated by scanning tunneling microscopy how the stress introduced by a mismatched interface affects the structure of a growing graphene (Gr) layer on a Ni(100) surface in real time during the process. Strain release appears to be the main factor governing morphology, with the interplay of two simultaneous driving forces: on the one side the need to obtain two-dimensional best registry with the substrate, via formation of moire patterns, on the other side the requirement of optimal one-dimensional in-plane matching with the transforming nickel carbide layer, achieved by local rotation of the growing Gr flake. Our work suggests the possibility of tuning the local properties of two-dimensional films at the nanoscale through exploitation of strain at a one-dimensional interface. (C) 2020 Elsevier Ltd. All rights reserved.