• 文献标题:   A Ni-MOF derived graphene oxide combined Ni3S2-Ni/C composite and its use in the separator coating for lithium sulfur batteries
  • 文献类型:   Article
  • 作  者:   QIAN XY, CHENG J, WANG YH, JIN LN, CHEN JY, HAO QY, ZHANG K
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d2cp05580e EA JAN 2023
  • 出版年:   2023

▎ 摘  要

Lithium-sulfur batteries (LSBs) are widely regarded as reliable novel secondary batteries due to their low price and high capacity. Nevertheless, the notorious "shuttle effect" limits the commercialization of LSBs. In order to solve this problem, we fabricated a Ni3S2-Ni/C composite through carbonization, vulcanization and hydrothermal reactions by using a Ni-MOF precursor and applied it as a separator modification layer to enhance the electrochemical properties of LSBs. To further increase the conductivity of the material, a small amount of GO was added during the experiment. The prepared material was also used as separator modified coating material to optimize the electrochemical performance of LSBs. The as prepared Ni3S2-Ni/C(GO) composite shows good conductivity and has a superior porous structure and abundant active sites. Lithium polysulfides (LPs) can be physically confined and chemically adsorbed, what is more, the Ni and Ni3S2 active sites enable fast conversion of LPs which further optimizes the rate performance. From the cycle performance measurement, the initial discharge specific capacity of the Ni3S2-Ni/C(GO) modified separator battery is found to be 1263.4, 1181.5, 1090.6, and 840.3 mA h g(-1) at 0.05, 0.1, 0.3 and 0.5C, respectively. After 400 charge/discharge cycles at 0.5C, the capacity remains at 483.6mA h g(-1) with a capacity retention ratio of 57.56%.