▎ 摘 要
Holey graphene/polypyrrole hybrid aerogels (HGPAs) with three-dimensional (3D) hierarchical structure have been fabricated by freeze-drying holey graphene/polypyrrole hydrogels, which are assembled by using holey graphene (HG) nanosheets and polypyrrole (PPy) nanoparticles as assembling primitives. The as-prepared HGPAs materials show an interconnected and stable 3D porous network, and PPy nano particles uniformly embedded in the aerogel prevent the restacking of holey graphene (HG) nanosheets. The unique hierarchical porous structure and synergistic effect between PPy nanoparticles and HG nanosheets make HGPA hybrid aerogel electrode with a mass ratio of PPy/HGO = 0.75 exhibits high specific capacitance (418 F g(-1)) at a current density of 0.5 A g(-1), extremely outstanding rate capability (80%) at various current densities from 0.5 to 20 A g(-1) and good cycling performance (74%) after 2000 cycles in 1.0 M KOH aqueous electrolyte. Moreover, the effect of the PPy nanoparticle sizes in HGPAs on their electrochemical properties is also investigated, and PPy nanoparticles with relatively larger sizes are favorable of the good capacitive performance for the obtained electrodes. The facile and efficient preparation method for HGPAs electrodes may be developed for preparing other holey graphene-based hybrid aerogels with structure-controllable nanostructures. (C) 2016 Elsevier B.V. All rights reserved.