▎ 摘 要
The electromagnetic property of graphene is studied by finite-difference time-domain (FDTD) method. As the graphene has excellent electrical conductivity and high transparency, it has certain advantages as a transparent electrode for solar cells. This paper designs a three-layer film structure composed of graphene, silicon, and silicon dioxide (SiO2). Then, the effects of the chemical potential and the scattering rate of the graphene on the light absorption of the film are studied. The study found that the electromagnetic property of graphene is relatively stable, which is not easily influenced by the external environment. After changing its chemical potential, scattering rate, and other parameters, it is found that the film absorption rate is less affected unless the large range of chemical potential changes; it will lead to a decline in the absorption rate of light.