▎ 摘 要
Purpose A wide band perfect THz absorber is presented in this work. The structure includes two layers of graphene disks on the silicon dioxide dielectric layer while a golden plate is placed at the bottom to act as a fully reflecting mirror against THz waves. According to the simulations, the device is robust enough to show independent operation versus layers thicknesses variations, chemical potentials mismatches and changing of electron relaxation time. The designed THz absorber in this work is an appropriate basic block for several applications in THz optical systems such as sensors, detectors and modulators. Design/methodology/approach The layers in the proposed device are modeled via passive circuit elements and consequently, the equivalent circuit of the device is calculated. Leveraging the developed equivalent circuit model (ECM) and impedance matching concept, the proposed device is designed to perfect absorption with 4.7 THz bandwidth that possesses over 90% absorption. Ample simulations are performed using MATLAB (ECM) and CST (finite element method) to verify the superior performance of the device. According to the simulations, the device is robust enough to show independent operation versus layers thicknesses variations, chemical potentials mismatches and changing of electron relaxation time. Findings This work reports a wideband THz absorber, composed of two graphene layers. This paper considers the circuit model representation for two different layers of the device. For a unique structure, a highly tunable response versus chemical potential is obtained. The circuit model approach and impedance matching theory are exploited to reduce computational time regarding conventional approaches. Originality/value A wide band absorber in THz band is presented. Leveraging circuit model approach and impedance matching theory, the design procedure is simplified regarding CPU time and memory requirements compared to conventional methods. Detailed calculations and ample simulations verify the performance excellency of the device to absorb THz incident waves in 2-6.5 THz frequencies. Also, the robustness of the device is investigated versus parameters mismatches like layers thicknesses and chemical potentials values. According to the simulations and absorption response, the proposed device is an appropriate block to be used in THz optical systems such as detectors, imaging systems and optical modulators.