▎ 摘 要
A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at 530 nm decreased, and a new peak at a higher wavelength of 680 nm appeared. The effective parameters on cysteine quantification were optimized via response surface methodology using the central composite design. Under optimum conditions, the absorbance ratio (A(680)/A(530)) has a linear proportionality with cysteine concentration in the range of 0.04-1.20 mu mol L-1 with a limit of detection of 0.009 mu mol L-1. The fabrication of the reported nanosensor is simple, fast, and is capable of efficient quantification of ultra traces of cysteine in human serum and urine real samples.