▎ 摘 要
Nitric oxide (NO) is an antimicrobial agent that possesses tissue-regenerating ability. However, it also has a short halflife and storage difficulties as disadvantages to its application. To overcome these limitations, a new type of hydrogelforming microneedle (HFMN) is proposed that can be fabricated by integrating polyvinyl alcohol (PVA) hydrogels (a highly biocompatible drug carrier) with S-nitrosoglutathione (GSNO, a NO releasing agent), and graphene oxide (GO) at freezing temperatures (GO-GNSO-HFMNs). Results show that GSNO-GO-HFMNs release NO gradually with increasing temperature and, more importantly, can be warmed up by mild infrared irradiation to accelerate subcutaneous release of NO from the heat-sensitive GSNO. Biofilm-infected wounds often present obstacles to drug delivery, whereas the microneedle (MN) structure disrupts the biofilm and directly releases NO into the wound. This inhibits bacterial growth and increases tissue regeneration while shortening the healing time of biofilm-infected wounds. Therefore, this type of patch can be regarded as a novel, heat-sensitive, light-regulated, NO-releasing MN patch.