▎ 摘 要
Two-dimensional disclinated atomic graphene layer in curved spacetime is exactly discussed, and the explicit dependence of Landau levels on the topological defect and external magnetic field are obtained in the presence of nonuniform magnetic field. It is worth mentioning that the presence of topological defect reduces the degeneracy of energy levels. The persistent current, magnetization, susceptibility and the magnetoresistance of structure are investigated. It can be shown that the curvature of the conical surface affects the pattern of oscillations of persistent current and, of course, corresponding magnetoresistance. The behavior of the above physical quantities as a function of magnetic flux is explicitly found for various defects. We observe that increasing magnetic field leads to a aperiodic oscillation. The large AharonovBohm flux gives rise to vanish the magnetization oscillations.