▎ 摘 要
The Bismuth based Zinc metal oxide (ZnBi12O20) nanorods were synthesized via single step solvothermal approach. The characterization of synthesized hybridized structure was done by several analysis such as X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UVvis-DRS), Fourier transform-infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Raman spectroscopy, Field-Emission scanning electron microscopy (FESEM), Energy dispersive analysis of X-rays (EDX), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy. The photocatalytic activity of ZnBi12O20 and an incorporation of varying weight percentages of GO (1-4 wt %) into ZnBi(12)O(20 )catalyst (GZBC) were analyzed under visible light irradiation by the degradation of an aqueous solution of Methylene blue (MB) and Methyl orange (MO) dye. Among various developed nanocomposites, 3 wt% GZBC reduced graphene oxide exfoliated nanocomposites has revealed the degradation efficiency as 96.04, 94.52% at 100 and 120 min for MB and MO respectively with enriched visible light absorption range. The photocatalytic property of 3 wt % reduced graphene oxide exhibits higher degradation behavior than that of other synthesized nano-composites.