▎ 摘 要
The optical response of a new graphene-like material Si2BN'snanostructures and some kinds of hybrid structures formed by Si 2 BN and metal nanoparticles was studied by using time-dependent density functional theory (TDDFT). We found that the periodic structures of Si2BN have wider absorption ranges than graphene. When the impulse excitation polarizes in different directions (armchair-edge direction and zigzag-edge direction). the absorption spectra of Si2BN nanostructures would be different (optical anisotropy). And in the hybrid structures, the increase of metal nanoparticles' number brings the absorption intensity strengthening and red shift, which means a stronger ability of localized surface plasmon tuning. Also, the different metal nanoparticles were used to form the hybrid structures; they show an obviously different property as well. In addition, in the kinds of situations mentioned above, the plasmons were produced in visible region. This investigation provides an improved understanding of the plasmon enhancement effect in graphene-like photoelectric devices.