▎ 摘 要
Graphene-based one-dimensional macroscopic assemblies (GBOMAs) have attracted great attention and extensive efforts have been devoted to enabling great progress. However, their applications are still restricted to less functionalized electronics, and the superior potentials remain scarce. Herein, inspired by natural scallion structure, a novel strategy was introduced to effectively improve battery performances through the mesoscale scallion-like wrapping of graphene. The obtained RGO/Ag-Li anodes demon-strated an ultralow overpotential of similar to 11.3 mV for 1800 h at 1 mA cm(-2). in carbonate electrolytes, which is superior to those of the most previous reports. Besides, this strategy can also be further expanded to the high mass loading of various cathode nanomaterials, and the resulting RGO/LiFePO4 cathodes exhibited remarkable rate performance and cycle stability. This work opens a new avenue to explore and broaden the applications of GBOMAs as scaffolds in fabricating full lithium batteries via maximizing their advantages derived from the unique structure and properties.