• 文献标题:   Fabrication of an electrochemical sensor with Au nanorods-graphene oxide hybrid nanocomposites for in situ measurement of cloxacillin
  • 文献类型:   Article
  • 作  者:   GOLKARIEH AM, NASIRIZADEH N, JAHANMARDI R
  • 作者关键词:   sensor, pharmaceutical contaminant, cloxacillin, adsorbent nanocomposite
  • 出版物名称:   MATERIALS SCIENCE ENGINEERING CMATERIALS FOR BIOLOGICAL APPLICATIONS
  • ISSN:   0928-4931 EI 1873-0191
  • 通讯作者地址:  
  • 被引频次:   15
  • DOI:   10.1016/j.msec.2020.111317
  • 出版年:   2021

▎ 摘  要

In recent years, considering the increasing use of antibiotics, and their continued entry into the environment, extensive research has been conducted on the impact of antibiotics on human health, water resources, and the environment. In this study, a suitable method has been proposed for detecting and elimination the trace amounts of the antibiotic cloxacillin in aqueous. For identify trace amounts of cloxacillin in solution, a new electrochemical nanosensor based on a screen printed carbon electrode (SPCE) modified with gold nanorods/graphene oxide was proposed. This nanosensor, which was prepared by self-assembling method, was capable of measuring cloxacillin in the 5.0-775.0 nM with a detection limit of 1.6 nM. In order to reduce the amount of antibiotics in the environment, a novel carbon nanocomposite based on sol-gel method was prepared and its application as a high-capacity adsorbent for the removal of cloxacillin was studied. In the antibiotic removal experiments, the effect of pH, contact time, different mass ratios of SWCNT and amount of nanocomposite adsorbent were also optimized by response surface methodology (RSM). The prepared nanosensor and synthesized carbon nanocomposites were then characterized by commonly identical techniques involve SEM, EDAX, BET and FT-IR. The presented nanosensor was successfully used for the in situ determination of Clox in adsorptive tests with reliable recovery. As well, the AuNR/GO/SPC electrode presented well stability, repeatability and reproducibility. In addition, good performance and high adsorption capacity make developed adsorbent as a suitable case for the removal of water-soluble pharmaceutical contaminants.