• 文献标题:   Reduced polyoxomolybdate immobilized on reduced graphene oxide for rapid catalytic decontamination of a sulfur mustard simulant
  • 文献类型:   Article
  • 作  者:   WU YY, DONG J, LIU CP, JING XT, LIU HF, GUO Y, CHI YN, HU CW
  • 作者关键词:  
  • 出版物名称:   DALTON TRANSACTIONS
  • ISSN:   1477-9226 EI 1477-9234
  • 通讯作者地址:  
  • 被引频次:   9
  • DOI:   10.1039/d1dt01265g EA JUN 2021
  • 出版年:   2021

▎ 摘  要

Keggin-type polyoxometalates (POMs) were immobilized on poly(diallyldimethylammonium chloride) (PDDA) functionalized reduced graphene oxide (rGO) by a facile and broad-spectrum hydrothermal method. The prepared POMs@PDDA-rGO composites (POM = H3PMo12O40, H3PW12O40, H5PMo10V2O40) have been thoroughly characterized using a series of techniques. The three composites can catalyze the oxidative decontamination of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES) in the order of PMo12@PDDA-rGO > PMo10V2@PDDA-rGO > PW12@PDDA-rGO. Notably, under ambient conditions PMo12@PDDA-rGO can convert 99% of CEES within 30 min in the presence of nearly stoichiometric aqueous H2O2 (3 wt%) and its catalytic activity is significantly higher than that of homogeneous H3PMo12O40. XPS spectral analysis and control experiments indicate that the Mo center of POM is reduced from +6 to +5 during the hydrothermal process, and the excellent catalytic performance is related to the reduction of Mo. Moreover, the PMo12@PDDA-rGO composite is stable during the decontamination process and it can be used for at least five cycles without loss of activity.