▎ 摘 要
We presented a detailed study of the oxidation functional groups (epoxide and hydroxyl) on graphene based on density-functional calculations. Effects of single functional groups and their various combinations on the electronic and structural properties are investigated. It is found that single functional groups can induce interesting electronic bound states in graphene. Detailed energetics analysis shows that epoxy and hydroxyl groups tend to aggregate on the graphene plane. Investigations of possible ordered structures with different compositions of epoxy and hydroxyl groups show that the hydroxyl groups could form chainlike structures stabilized by the hydrogen bonding between these groups, in close proximity of the epoxy groups. Our calculations indicate that the energy gap of graphene oxide can be tuned in a large range of 0-4.0 eV, suggesting that functionalization of graphene by oxidation will significantly alter the electronic properties of graphene.