▎ 摘 要
A higher-order nonlocal strain-gradient model is presented for the damped vibration analysis of single-layer graphene sheets (SLGSs) in hygrothermal environment. Based on Kirchhoff plate theory in conjunction with a higher-order (bi-Helmholtz) nonlocal strain gradient theory, the equations of motion are obtained using Hamilton's principle. The higher-order nonlocal strain gradient theory has lower- and higher-order nonlocal parameters and a material characteristic parameter. The presented model can reasonably interpret the softening effects of the SLGS, and indicates a reasonably good match with the experimental flexural frequencies. Finally, the roles of viscous and structural damping coefficients, small-scale parameters, hygrothermal environment and elastic foundation on the vibrational responses of SLGSs are studied in detail. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.