• 文献标题:   Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection
  • 文献类型:   Article
  • 作  者:   SHANDILYA P, MITTAL D, SONI M, RAIZADA P, HOSSEINIBANDEGHARAEI A, SAINI AK, SINGH P
  • 作者关键词:   fluorine doped graphene nanosheet, smvo4, welldispersed photocatalyst, photocatalytic water treatment, antibacterial activity
  • 出版物名称:   JOURNAL OF CLEANER PRODUCTION
  • ISSN:   0959-6526 EI 1879-1786
  • 通讯作者地址:   Shoolini Univ
  • 被引频次:   24
  • DOI:   10.1016/j.jclepro.2018.08.271
  • 出版年:   2018

▎ 摘  要

During heterogeneous photocatalysis, high dispersion of photocatalyst is vital for efficiency of slurry type photoreactors. In this work, we have prepared fluorine doped graphene (FG24) as a highly dispersible adsorbent by sonochemical exfoliation method. Moreover, SmVO4 (SV) nanoparticles were immobilized onto the surface of FG24 to prepare SV/FG24 photocatalyst, using post synthesis method. The zeta potential and Tyndall effect experiments confirmed the formation of highly dispersed SV/FG24 photo catalyst. The thickness of both FG24 and SV/FG24 was less than 2.0 nm. The band gap of SV/FG24 was 2.28 eV. The high surface area of SV/FG24 was suitable for adsorptive removal of phenol and 2, 4-dinitrophenol (DNP). The simultaneous process of adsorption and photocatalysis was the most effective for the degradation of selected phenolic compounds. Both phenol and DNP were mineralized in 10 h under visible light. The intermediates formation during the degradation process was proved by highperformance liquid chromatography and mass spectrometry analysis. The photocatalytic activity of SV/FG24 was also tested for photocatalytic bacterial disinfection of Escherichia toll, Bacillus subtilis, Pseudomonas fluorescence, Staphylococcus aureus, and Streptococcus enterica bacteria. The selected bacteria were deactivated using SV/FG24 in 3 h under visible light. Both OH center dot and O-2(center dot) radicals played an important role during both degradation and disinfection process. Due to significant recyclability, SV/FG24 could be used as cost-effective photocatalyst for wastewater treatment. Unlike conventional slurry photo-reactors, no magnetic stirring was used during photocatalytic degradation reactions. We have successfully fabricated high-dispersed photocatalyst which remained dispersed for 10 h and effectively used for photocatalytic water purification process. (C) 2018 Elsevier Ltd. All rights reserved.