• 文献标题:   Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications
  • 文献类型:   Article
  • 作  者:   ALDALBAHI A, SAMUEL E, ALOTAIBI BS, ELHAMSHARY H, YOON SS
  • 作者关键词:   supersonic spraying, conductive textile, wearable energy device, reduced graphene oxide, iron oxide, supercapacitor
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCE TECHNOLOGY
  • ISSN:   1005-0302
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1016/j.jmst.2020.11.066 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

We demonstrate the fabrication of wearable supercapacitor electrodes. The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide (rGO) followed by decoration with iron oxide (Fe2O3) nanoparticles via a hydrothermal process. The integration of iron oxide with rGO flakes on wearable fabric demonstrates immense potential for applications in high-energy-storage devices. The synergetic impact of the intermingled rGO flakes and Fe2O3 nanoparticles enhances the charge transport within the composite electrode, ultimately improving the overall electrochemical performance. Taking advantage of the porous nature of the fabric, electrolyte diffusion into the active rGO and Fe2O3 materials was significantly enhanced and subsequently increased the electrochemical interfacial activities. The effect of the Fe2O3 concentration on the overall electrochemical performance was investigated. The optimal composition yields a specific capacitance of 360 F g(-1) at a current density of 1 A g(-1) with a capacitance retention rate of 89 % after 8500 galvanostatic cycles, confirming the long-term stability of the Fe2O3/rGO fabric electrode. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.