• 文献标题:   Large magnetotransport properties in mixed-dimensional van der Waals heterostructures of graphene foam
  • 文献类型:   Article
  • 作  者:   SAGAR RUR, SHABBIR B, HASNAIN SM, MAHMOOD N, ZEB MH, SHIVANANJU BN, AHMED T, QASIM I, MALIK MI, KHAN Q, SHEHZAD K, YOUNIS A, BAO QL, ZHANG M
  • 作者关键词:   graphene foam, magnetoresistance, mixeddimensional heterostructure, spinorbit coupling, molybdenum disulfide, chemical vapor deposition
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Tsinghua Univ
  • 被引频次:   2
  • DOI:   10.1016/j.carbon.2020.01.001
  • 出版年:   2020

▎ 摘  要

Mixed dimensional van der Waals heterostructures (MD-vdWhs) open a huge potential to fabricate novel devices based on numerous metamaterials with superior magnetotransport properties. In conventional vdWhs, a variety of two dimensional (2D) layers has been stacked together to demonstrate vdWhs with phenomenal functionalities. However, fabricating 2D materials and their vdWhs over large areas with excellent magnetoresistance (MR) characteristics remains a major challenge. Graphene foam (GF), a 3D form of Dirac graphene continued to gather much attention for magnetotransport applications due to its gramscale/cost effective production and better magnetoresistance properties. Also, many combinations could be possible with GF to create numerous MD-vdWhs with hybrid functionalities, potentially giving access to explore novel devices with unique hybrid properties. Herein, we demonstrate MD-vdWhs (2D+3D) of GF with molybdenum disulfide (MoS2) to investigate magnetotransport properties. Remarkably, MR of GF is increased from similar to 130% to similar to 210% at 5 K under an applied magnetic field of 5 T by fabricating its MD-vdWhs with MoS2. Our systematic investigations show that distinct magnetotransport properties in GF/MoS2 vdWhs are strongly correlated to the enhancement in spin-orbit-coupling of the MD-vdWhs. Together, these results present a promising path toward the fabrication of future sensing and memory devices. (C) 2020 Elsevier Ltd. All rights reserved.