• 文献标题:   In Vitro Hemocompatibility and Toxic Mechanism of Graphene Oxide on Human Peripheral Blood T Lymphocytes and Serum Albumin
  • 文献类型:   Article
  • 作  者:   DING ZJ, ZHANG ZJ, MA HW, CHEN YY
  • 作者关键词:   hemocompatibility, graphene oxide, plasma protein, t lymphocyte, toxic mechanism
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   43
  • DOI:   10.1021/am505084s
  • 出版年:   2014

▎ 摘  要

Graphene oxide (GO) has shown tremendous application potential as a biomedical material. However, its interactions with blood components are not yet well understood. In this work, we assess the toxicity of pristine GO (p-GO) and functionalized GO (GO-COOH and GO-PEI) to primary human peripheral blood T lymphocytes and human serum albumin (HSA), and also study the underlying toxic mechanism. Our results indicate that p-GO and GO-COOH have good biocompatibility to T lymphocytes at the concentration below 25 mu g mL(-1), but notable cytotoxicity above 50 mu g mL(-1). By contrast, GO-PEI exhibits significant toxicity even at 1.6 mu g mL(-1). Further investigations show that although p-GO does not enter into the cell or damage the membrane, its presence leads to the increase in reactive oxygen species (ROS), moderate DNA damage, and T lymphocyte apoptosis. Interestingly, little effect on T lymphocyte immune response suppression is observed in this process despite p-GO inflicting cell apoptosis. The toxic mechanism is that p-GO interacts directly with the protein receptors to inhibit their ligand-binding ability, leading to ROS-dependent passive apoptosis through the B-cell lymphoma-2 (Bcl-2) pathway. Compared with p-GO, GO-COOH exhibits a similar toxic effect on T lymphocytes except keeping a normal ROS level. A proposed toxic mechanism is that GO-COOH inhibits protein receptor-ligand binding, and passes the passive apoptosis signal to nucleus DNA through a ROS-independent mechanism. On the other hand, GO-PEI shows severe hematotoxicity to T lymphocytes by inducing membrane damage. For plasma protein HSA, the binding of GO-COOH results in minimal conformational change and HSA's binding capacity to bilirubin remains unaffected, while the binding of p-GO and GO-PEI exhibits strong toxicity on HSA. These findings on the interactions of two-dimensional nanomaterials and biological systems, along with the enquiry of the mechanisms, would provide essential support for further safety evaluation of the biomedical applications of GO.