• 文献标题:   Functionalized Graphene Oxide Modified Polyethersulfone Membranes for Low-Pressure Anionic Dye/Salt Fractionation
  • 文献类型:   Article
  • 作  者:   LIU LF, XIE X, ZAMBARE RS, SELVARAJ APJ, SOWRIRAJALU BNIL, SONG XX, TANG CYY, GAO CJ
  • 作者关键词:   polyethersulfone, graphene oxide, ionic liquid, polydopamine, nanofiltration, dye/salt fractionation
  • 出版物名称:   POLYMERS
  • ISSN:   2073-4360
  • 通讯作者地址:   Zhejiang Univ Technol
  • 被引频次:   0
  • DOI:   10.3390/polym10070795
  • 出版年:   2018

▎ 摘  要

In this study, polyelectrolyte assembled functionalized graphene oxide (PE-GO) membranes were fabricated through a one-step charge facilitated deposition method for high performance dye/salt separation. According to the intercalation of polydopamine (PDA) and (ionic liquid) IL functional moieties into the GO membranes, the pore size of the resulted PE-pGO and PE-iGO membrane increased from 2.69 nm to 4.13 nm and 6.54 nm, respectively. Correspondingly, a pure water flux of 13.8 +/- 2.2, 36.7 +/- 3.4, and 52.1 +/- 6.7 L m(-1) h(-1) bar(-1) was achieved for PE-GO, PE-pGO and PE-iGO membrane, respectively. PE-iGO membrane with the largest pore size could be operated with significant water permeability (28.3 to 38.3 L m(-1) h(-1) bar(-1)) at a low operating pressure range of 0.5-2 bar (dye concentration = 100 ppm, salt concentration = 5 g/L). More importantly, functionalities introduced to the GO nanosheets are found to impact the dye adsorption to the membrane surface. The IL intercalation promotes the elution of dye molecules from the IL moieties at elevated pH, therefore enhancing the efficiency of alkaline washing of the membrane. By contrast, the intercalation of PDA weakens such efficiency due to its strong adhesion force to the dye molecules even at the alkaline condition.