• 文献标题:   Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage
  • 文献类型:   Article
  • 作  者:   LU C, LI ZZ, XIA Z, CI HN, CAI JS, SONG YZ, YU LH, YIN WJ, DOU SX, SUN JY, LIU ZF
  • 作者关键词:   snse, nitrogendoped graphene, plasmaenhanced chemical vapor deposition, conductivity, sodiumion storage
  • 出版物名称:   NANO RESEARCH
  • ISSN:   1998-0124 EI 1998-0000
  • 通讯作者地址:   Soochow Univ
  • 被引频次:   11
  • DOI:   10.1007/s12274-019-2551-0 EA NOV 2019
  • 出版年:   2019

▎ 摘  要

Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries and hybrid capacitors. However, synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durable sodium-ion storages remains challenging to date for its practical applications. Herein, metal-organic framework (MOF) derived SnSe/C wrapped within nitrogen-doped graphene (NG@SnSe/C) is designed targeting durable sodium-ion storage. NG@SnSe/C possesses favorable electrical conductivity and structure stability due to the "inner" carbon framework from the MOF thermal treatment and "outer" graphitic cage from the direct chemical vapor deposition synthesis. Consequently, NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh center dot g(-1) at 0.05 A center dot g(-1), a favorable rate performance of 287.8 mAh center dot g(-1) at 5 A center dot g(-1) and a superior cycle stability with a negligible capacity decay of 0.016% per cycle over 3,200 cycles at 0.4 A center dot g(-1). Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/C structure and improve the electrical conductivity. The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-ray diffraction/ex-situ transmission electron microscopy. Furthermore, assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/C anode and an active carbon cathode harvest a high energy/power density of 115.5 Wh center dot kg(-1)/5,742 W center dot kg(-1), holding promise for next-generation energy storages.