▎ 摘 要
Functionalized graphene sheets have attracted increasing attention due to their novel micro-/nano-electromechanical applications. In this paper, the aggregation of the gold nano-clusters on the defected graphene sheet is studied by using the molecular dynamics simulation method. It is shown that a model defected graphene with randomly distributed vacancies can affect the formation and aggregation of the Au nano-clusters on the graphene sheet. It is found that the Au nano-clusters agglomerate on the pristine parts of the surface rather than on the defected parts. In addition, the results show that increasing the temperature amplifies the above result and varies the Au nano-cluster sizes. Moreover, it is observed that the aggregation of Au clusters changes the surface roughness. The results presented here would help to design more efficient functionalized graphene-based electronic devices.