▎ 摘 要
Catechol level is an important indicator for evaluating the quality of tea. Therefore, the exploration of a simple and efficient quantitative detection method for catechol has an important significance. In this study, functionalized graphene oxide was synthesized by chemically modifying the surface of graphene oxide. The prepared carrier was covalently combined with biomimetic oxidase iron porphyrin (FePP, the active center of horseradish peroxidase). Ionic liquid as covalent coupling agents was designed as electronic bridge between biomimetic oxidase and graphene oxide. The novel biomimetic biosensor provided a detection range of 50.0-1600.0 mu mol/L by modulating under the optimal conditions of the reaction system (FePP concentration is 1.5 x 10(-3) mol/L, pH 3.0, Nafion solution dosage 1% and temperature 25 degrees C), the detection limit is 0.09 mu mol/L. The biosensor has excellent stability, repeatability and reproducibility, and is expected to be applied to the rapid detection of catechol in actual tea sample. [GRAPHICS]