▎ 摘 要
As a simple and versatile method, diffusion driven Layer-by-Layer assembly (dd-LbL) is developed to assemble graphene oxide (GO) into three-dimensional (3D) structure. The assembled GO macrostructure can be reduced through a hydrothermal treatment and used as a high volumetric capacitance electrode in supercapacitors. In this report we use rGO framework created from dd-LbL as a scaffold for in situ polymerization of aniline within the pores of the framework to form rGO/polyaniline (rGO/PANI) composite. The rGO/PANI composite affords a robust and porous structure, which facilitates electrolyte diffusion and exhibits excellent electrochemical performance as binder-free electrodes in a sandwich configuration supercapacitor. Combining electric double layer capacitance and pseudo-capacitance, rGO/PANI electrodes exhibit a specific capacitance of 438.8 F g(-1), at discharge rate of 5 mA (mass of electrodes were 10.0 mg, 0.5 A g(-1)) in 1 mol L-1 H2SO4 electrolyte; furthermore, the generated PANI nanoparticles in rGO template achieve a higher capacitance of 763 F g(-1). The rGO/PANI composite electrodes also show an improved recyclability, 76.5% of capacitance retains after recycled 2000 times. (C) 2017 Elsevier B.V. All rights reserved.